Dermillume TransCranial Light Therapy | Medical Research



Dermillume TransCranial Light Therapy | Medical Research



Transcranial LED therapy for cognitive dysfunction in chronic, mild traumatic brain injury: Two case reports (pdf)

Two chronic, traumatic brain injury (TBI) cases are presented, where cognitive function improved following treatment with transcranial light emitting diodes (LEDs). At age 59, P1 had closed-head injury from a motor vehicle accident (MVA) without loss of consciousness and normal MRI, but unable to return to work as development specialist in internet marketing, due to cognitive dysfunction. At 7 years post-MVA, she began transcranial LED treatments with cluster heads (2.1” diameter with 61 diodes each – 9x633nm, 52x870nm; 12-15mW per diode; total power, 500mW; 22.2 mW/cm2) on bilateral frontal, temporal, parietal, occipital and midline sagittal areas (13.3 J/cm2 at scalp, estimated 0.4 J/cm2 to brain cortex per area). Prior to transcranial LED, focused time on computer was 20 minutes. After 2 months of weekly, transcranial LED treatments, increased to 3 hours on computer. Performs nightly home treatments (now, 5 years, age 72); if stops treating >2 weeks, regresses. P2 (age 52F) had history of closed-head injuries related to sports/military training and recent fall. MRI shows fronto-parietal cortical atrophy. Pre-LED, was not able to work for 6 months and scored below average on attention, memory and executive function. Performed nightly transcranial LED treatments at home (9 months) with similar LED device, on frontal and parietal areas. After 4 months of LED treatments, returned to work as executive consultant, international technology consulting firm. Neuropsychological testing (post- 9 months of transcranial LED) showed significant improvement in memory and executive functioning (range, +1 to +2 SD improvement). Case 2 reported reduction in PTSD symptoms.

Keywords: Traumatic brain injury, treatment, cognitive dysfunction, light emitting diodes, post-concussion syndrome, sports head injury, LLLT, PTSD

Transcranial Light Emitting Diode Therapy (TCLT) and its Effects on Neurological Disorders (pdf)

The Transcranial LED Therapy (TCLT) is a modality of low-level energy therapy based on the principle of photons delivered in a non-invasive manner for the rehabilitation of some neurological conditions such as psychological disorders, traumatic brain injuries, and neurodegenerative diseases among others. Because the phototherapy approach has attracted interest in the scienti¿c medical ¿eld we discuss the action of TCLT at the cellular level in this review. Cytochrome c oxidase is the main target of TCLT for therapeutic effects by enhancing cerebral blood Àow. This enzyme boosts cell respiration and energy production, which induces cell proliferation and reduces apoptosis in Alzheimer and Parkinson’s diseases. Thus, TCLT is a safe, non-invasive, and low cost alternative treatment compared to other treatment modalities for clinical neurological disorders.

Keywords: Transcranial light emitting diode therapy; LED; Neurodegenerative disease; Cytochrome oxidase


More Medical Research….


Military-related traumatic brain injury and neurodegeneration (pdf)

Mild traumatic brain injury (mTBI) includes concussion, subconcussion, and most exposures to explosive blast from improvised explosive devices. mTBI is the most common traumatic brain injury affecting military personnel; however, it is the most difficult to diagnose and the least well understood. It is also recognized that some mTBIs have persistent, and sometimes progressive, long-term debilitating effects. Increasing evidence suggests that a single traumatic brain injury can produce long-term gray and white matter atrophy, precipitate or accelerate age-related neurodegeneration, and increase the risk of developing Alzheimer’s disease, Parkinson’s disease, and motor neuron disease. In addition, repetitive mTBIs can provoke the development of a tauopathy, chronic traumatic encephalopathy. We found early changes of chronic traumatic encephalopathy in four young veterans of the Iraq and Afghanistan conflict who were exposed to explosive blast and in another young veteran who was repetitively concussed. Four of the five veterans with early-stage chronic traumatic encephalopathy were also diagnosed with posttraumatic stress disorder. Advanced chronic traumatic encephalopathy has been found in veterans who experienced repetitive neurotrauma while in service and in others who were accomplished athletes. Clinically, chronic traumatic encephalopathy is associated with behavioral changes, executive dysfunction, memory loss, and cognitive impairments that begin insidiously and progress slowly over decades. Pathologically, chronic traumatic encephalopathy produces atrophy of the frontal and temporal lobes, thalamus, and hypothalamus; septal abnormalities; and abnormal deposits of hyperphosphorylated tau as neurofibrillary tangles and disordered neurites throughout the brain. The incidence and prevalence of chronic traumatic encephalopathy and the genetic risk factors critical to its development are currently unknown. Chronic traumatic encephalopathy has clinical and pathological features that overlap with postconcussion syndrome and posttraumatic stress disorder, suggesting that the three disorders might share some biological underpinnings.

Keywords: Chronic traumatic encephalopathy, Veterans, Neurodegeneration, Traumatic brain injury, Tauopathy, TDP-43, Alzheimer’s disease

Self-Administered Light Therapy May Improve Cognitive Function after Traumatic Brain Injury (pdf)

New Rochelle, NY, March 17, 2011-At-home, daily application of light therapy via light-emitting diodes (LEDs) placed on the forehead and scalp led to improvements in cognitive function and post-traumatic stress disorder in patients with a traumatic brain injury (TBI), according to a groundbreaking study published in Photomedicine and Laser Surgery, a peer-reviewed journal published by Mary Ann Liebert, Inc. The article is available free online.
Margaret Naeser, PhD, LAc, VA Boston Healthcare System, Boston University School of Medicine, and colleagues from Massachusetts General Hospital, and Harvard-MIT Division of Health Sciences and Technology, in Boston, and MedX Health Inc. (Mississauga, ON, Canada), report on the use of transcranial LED-based light therapy to treat two patients with longstanding traumatic brain injury (TBI). Each patient applied LEDs nightly and demonstrated substantial improvement in cognitive function, including improved memory, inhibition, and ability to sustain attention and focus. One patient was able to discontinue medical disability and return to full-time work. These cognitive gains decreased if the patients stopped treatment for a few weeks and returned when treatment was restarted. Both patients are continuing LED treatments in the home. The findings are presented in “Improved Cognitive Function After Transcranial, Light-Emitting Diode Treatments in Chronic, Traumatic Brain Injury: Two Case Reports.”


More Medical Research…


Neurodegenerative Diseases (pdf)

Neurodegenerative diseases are caused by the deterioration of certain nerve cells (neurons), such as occurs in Alzheimer’s disease, Parkinson’s disease (Trimmer et al., 2009), and Amyotrophic Lateral Sclerosis (Moges et al., 2009), as well as multiple sclerosis, are all due to neuronal degeneration in the central nervous system (Friedlander, 2003). The chronic, unrelenting, progressive nature of these devastating degenerative diseases has motivated the search for therapies that could slow down or arrest the downward course experienced by most patients, and even more desirable would be a therapy that could actually reverse the neuronal damage. Transcranial light therapy is considered to have the potential to accomplish these goals as depicted in Figure 12. Limitations in knowledge are still apparent, such as the optimal wavelength, light source, doses, pulsed or CW, polarization state, treatment timing and repetition frequency. Collaborative efforts between clinicians and basic researchers will likely increase the usage and understanding of effective laser-based therapies in the CNS (Lampl, 2007).